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Abstract. At LEP II it is hoped to measure the W mass to an accuracy of around 40 MeV. This will
require direct reconstruction of the mass of the W from its decay products in both the semi-leptonic and
hadronic decay channels. Final state perturbative reconnection effects in hadronic decays are considered
and their effect on 6-jet distributions and the reconstructed mass. The perturbative mass shift is found to
be ∼ 50 keV in the negative direction.

1 Introduction

One of the main goals of LEP II will be an accurate de-
termination of the mass of the W boson. An integrated
luminosity of 500 pb−1 suggests that an accuracy of 30–
50 MeV [1] could be reached. The process

e+e− → W+W− → 4 fermions (1)

can be split into three distinct classes depending on the
type of decay of each W-boson.

– Purely leptonic. Both W-bosons decay to leptons.
There are two neutrinos and reconstruction of the event
from observed charged lepton momenta is not possible.
Branching ratio for this channel ∼ 1

9 .
– Semi-leptonic. One W-boson decays to leptons, the

other decays hadronically. One neutrino is produced,
but the missing momentum can be reconstructed us-
ing energy-momentum conservation and assumptions
about the initial state radiation. Branching ratio for
this channel ∼ 4

9 .
– Fully hadronic. Both W-bosons decay hadronically. All

momenta are observable. The momenta directions are
well resolved, while the energy resolution can be im-
proved via kinematic fits (ie imposing the constraints
of energy and momentum conservation). Branching ra-
tio for this channel ∼ 4

9 .

In order to achieve the greatest accuracy the W mass
must be reconstructed using both the semi-leptonic and
the fully hadronic decay channels. However W’s decay very
rapidly so one expects that the space-time separation of
the two decays should be ∼ 0.1 fm. This is small com-
pared to the typical scale of hadronization ∼ 1 fm, thus
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in the case of fully hadronic decay there are two evolv-
ing hadronic systems with considerable space-time over-
lap. There is the possibility that the two systems do not
evolve independently, but influence each other.

These influences fall into two categories1 – Bose-Ein-
stein correlations between identical bosons in the final
state (typically pions) [6–13], and a re-arrangement of
the colour flow of the evolving systems at either the per-
turbative or hadronization level[14–18]. There has been
much work on the effects of colour re-arrangement at the
hadronization level, however hadronization is poorly un-
derstood and progress can only be made through con-
structing models. It is interesting to note that the models
of colour reconnections in the hadronization phase give
rather varied predictions[1,19] for the effects on physical
observables such as mean charged multiplicity or recon-
structed W mass, and so such measurements may probe
directly aspects of the confinement mechanism.

In this paper I will examine the effects of colour re-
connection at its lowest non-trivial order in perturbation
theory. In Sect. 2 I will explain why these effects should be
small and how they can be calculated directly. In Sect. 3
I shall present results for the effects of colour reconnec-
tion on various distributions including the W mass. The
conclusions will be found in Sect. 4.

2 Perturbative reconnection

Perturbative reconnection appears as higher order correc-
tions to the process shown in Fig. 1, in which gluons are
exchanged between the evolving quark systems. A possible
reconnection diagram is shown in Fig. 2; here a real gluon
emitted from one decay system interferes with the simi-
lar emission from the other decay system. One may also

1 I neglect the effects of electroweak interactions between the
two systems as these have been considered elsewhere[2–5]
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Fig. 1. e+e− → W+W − → qq̄QQ̄. The blob represents a sum
over the three lowest order production amplitudes

Fig. 2. A possible interference term involving one exchanged
gluon (the shaded blobs represent a sum over the three W-pair
production amplitudes)

Fig. 3. Interference terms involving the exchange of two gluons
(the W-pair production parts of the diagrams are omitted for
clarity)

consider the analogous virtual interference corresponding
to the exchange of a virtual gluon between decay systems.
Within perturbation theory these interference terms are
zero due to colour conservation2, and so one must con-
sider the exchange of at least two perturbative gluons.

A full calculation of the O(α2
s) corrections is beyond

the scope of this paper, however it is possible to examine
QCD interference effects in the production of 6 jets[20] via

e+e− → W+W− → qq̄qq̄gg (2)

in which interferences appear between the lowest order
diagrams. Two possible interference terms are shown in
Fig. 3.

These diagrams contain only two colour loops, com-
pared with the diagrams for gluon emissions within each
decay system which contain four loops. Therefore the in-

2 However it is not impossible for a colour octet to be ex-
changed between the two decay systems at the perturbative
level, only to be balanced by a non-perturbative exchange in
the hadronization phase. Such interplay between perturbative
and non-perturbative connections is not considered here.
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Fig. 4. Components used to calculate lowest order e+e− →
W+W − → qq̄qq̄. The shaded blob represents the sum of the
three interfering amplitudes, and the WW propagators have
been absorbed into the definition of T µν

terference terms are suppressed relative to the leading
emission by 1

N2
C

where NC is the number of colours.
There is further suppression due to the width of the

W. Gluons radiated within a decay system are free to
have any energy up to ∼ MW without pushing the W
Breit-Wigner propagators off resonance. However gluons
radiated between the decay systems (interference terms)
must carry energy less than ∼ ΓW or at least two of the W
propagators must be pushed off resonance and that term
will become suppressed. It has been shown that for inclu-
sive quantities, where the I.R divergences cancel between
real and virtual diagrams, that this leads to a suppression
of perturbative reconnection effects by O( ΓW

MW
)[21,22]. A

rough estimate of the size of perturbative reconnection
effects in W-pair production is thus:

∆σ

σ0
∼ α2

s

N2
C

ΓW

MW
∼ 10−4 (3)

and so one may estimate the possible mass shift as

∆MW ∼ α2
s

N2
C

ΓW ∼ a few MeV (4)

This should be regarded as an order of magnitude esti-
mate only. It is clearly desirable to calculate experimental
distributions in fixed order perturbation theory and ex-
amine how they may be distorted by the effects of colour
interference.

Using the helicity methods of [23] it is possible to con-
struct the amplitudes for all the doubly resonant diagrams
contributing to the qq̄qq̄gg final state3; there are 72 dia-
grams in total. In this method each amplitude is built up
from relatively few component pieces that can be calcu-
lated separately. For example the amplitude for Fig. 1 can
be written

M(r1, r2; p1, p2, p3, p4) = Tµν(r1, r2; p1 + p2, p3 + p4)

×j(1)
µ (p1, p2)j(1)

ν (p3, p4) (5)

where the terms are defined in Fig. 4 and the momentum
labels refer to Fig. 1. The computational complexity is re-

3 Strictly speaking this is not a gauge invariant set of dia-
grams, however one may see that a change of gauge leads to
singly resonant contributions which are neglected. The ampli-
tudes were evaluated in the unitary gauge.
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Fig. 5. Additional components needed to calculate the doubly
resonant contributions to e+e− → qq̄qq̄gg. The shaded blob
represents a sum over possible attachments of gluons to the
spinor line which preserve the order of attachments

duced by assuming massless electrons and massless quarks
which has been done throughout this paper.

In this way all of the amplitudes can be built up from
just the production tensor Tµν and some ‘decay currents’
j
(i)
µ . In order to calculate all amplitudes for double gluon

radiation four additional decay currents (Fig. 5) are
needed. Note one must distinguish between j

(4)
µ and j

(5)
µ

which are related by j
(4)
µ = j

(5)
µ (k1 ↔ k2) in order to

obtain the correct colour factors.
The decay currents may be contracted onto the pro-

duction tensor to obtain eight distinct Lorentz-colour
structures (colour-matrices are omitted for clarity)

M1 = Tµνj(2)
µ (p1, p2, k1)j(2)

ν (p3, p4, k2)

M2 = M1(k1 ↔ k2)

M3a = Tµνj(4)
µ (p1, p2, k1, k2)j(1)

ν (p3, p4)

M3b = Tµνj(5)
µ (p1, p2, k1, k2)j(1)

ν (p3, p4)

M4a = Tµνj(1)
µ (p1, p2)j(4)

ν (p3, p4, k1, k2)

M4b = Tµνj(1)
µ (p1, p2)j(5)

ν (p3, p4, k1, k2)

M5 = Tµνj(3)
µ (p1, p2, k1, k2)j(1)

ν (p3, p4)

M6 = Tµνj(1)
µ (p1, p2)j(3)

ν (p3, p4, k1, k2) (6)

then the total production amplitude is (suppressing colour
matrices)

M = M1+M2+M3a+M3b+M4a+M4b+M5+M6 (7)

after squaring and summing over colours it is convenient
to separate the squared matrix element into different parts
depending on the form of the Breit-Wigner resonances. In
this way one finds six distinct terms

∑
colours

|M|2 = M1 + M2 + M3 + M4 + M5 + M6 (8)

where

M1 = N2
CC2

F M1M∗
1 (9)

M2 = M1(k1 ↔ k2) (10)
M3 = N2

CC2
F (M3aM∗

3a + M3bM∗
3b) + N3

CCF M5M∗
5

−1
2
NCCF (M3aM∗

3b + M3bM∗
3a)

+
1
2
N3

CCF ([M3aM∗
5 + M5M∗

3a]

−[M3bM∗
5 + M5M∗

3b]) (11)
M4 = N2

CC2
F (M4aM∗

4a + M4bM∗
4b) + N3

CCF M5M∗
5

−1
2
NCCF (M4aM∗

4b + M4bM∗
4a)

+
1
2
N3

CCF ([M4aM∗
5 + M5M∗

4a]

−[M4bM∗
5 + M5M∗

4b]) (12)

M5 =
1
2
NCCF (M1M∗

2 + M2M∗
1) (13)

M6 =
1
2
NCCF [(M3a + M3b)(M4a + M4b)∗

+(M4a + M4b)(M3a + M3b)∗] (14)

In the above expression the terms M1, M2, M3, M4 de-
note the unreconnected parts, while M5 and M6 corre-
spond to interference between the two decays. The sepa-
ration into reconnected and unreconnected parts is (QCD)
gauge invariant.

One can find small regions of phase space where the
interference contribution to the total transition probabil-
ity is as large as 10%, even for relatively energetic gluons
(≥ 5 GeV). It is therefore not impossible that certain 6 jet
distributions could be significantly distorted by perturba-
tive reconnection.

A Monte Carlo program was written to generate WW
events with the qq̄qq̄gg final state using the Multichannel
approach [24] with 24 channels based on the kinematic
properties of the contributing diagrams. Events were gen-
erated at a centre-of-mass energy of 192 GeV, although
reconnection effects are expected to be insensitive to the
centre-of-mass energy within the LEP II range. In addi-
tion specific phase space parameterisations were computed
which allowed efficient integration of both types of inter-
ference term.

Six jet final states were defined according to a min-
imum invariant mass between partons. A lower limit of
scut = 1 GeV2 was used. Strictly speaking this is too
small for fixed order perturbation theory to be applica-
ble, however the philosophy is that the results obtained
will provide an upper limit on reconnection effects, since
moving to larger values of scut generally reduces any ef-
fect. The six partons were clustered to four jets using the
Durham algorithm[25]. Distributions for the Bengtsson-
Zerwas angle[26] (χBZ), the modified Nachtmann-Reiter
angle[27] (θNR) and the angle between the two lowest en-
ergy jets (α34) were computed with and without the in-
terference terms. These angles are defined by equation 15
below in which p1,p2,p3 and p4 are the energy ordered
jet 3-momenta.

cos(χBZ) =
(p1 × p2) · (p3 × p4)
|p1 × p2||p3 × p4|
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Fig. 6. Mass distribution for unreconnected events (solid line),
change induced by reconnected terms ×1000 (dashed line), in
arbitrary units

cos(θNR) =
(p1 − p2) · (p3 − p4)
|p1 − p2||p3 − p4| (15)

With four jets there are three ways of pairing them.
For each pairing the average of the invariant masses was
computed. Thus for each event one has three mass values
corresponding to each of the three possible pairings. The
mass closest to the input W mass was chosen as the mass
estimate (this is only one of several possibilities suggested
in [6]). Distributions for the mass calculated in this way
were also produced with and without colour interference
terms.

The difference between distributions with and with-
out the interference terms was computed. This shows the
distortion induced by the interferences.

Finally the integral of the absolute value of the inter-
ferences was found for gluon energies greater than 2 GeV,
5 GeV and 10 GeV. These quantities are finite since the
interference terms contain no collinear singularities (apart
from integrable ones when three partons become collinear),
and provide an indication of the possible size of interfer-
ence effects in events with jet energies greater than 2, 5
and 10 GeV.

3 Results

The mean mass can be calculated with and without the
reconnected terms. The result one finds depends on the
choice of invariant mass cut, but must tend to zero as
scut → 0 since the unreconnected terms are more singular
than the reconnected terms in this limit. Mass shifts for a
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Fig. 7. Distribution of χBZ , the Bengtsson-Zerwas Angle for
unreconnected events (solid line), change induced by recon-
nected terms ×1000 (dashed line)

variety of invariant mass cuts on the final state are shown
in the table below.

scut/GeV2 0.1 1.0 10.0 100.0
δMW /MeV −0.030 −0.045 −0.025 ∼ −0.015

The exact numbers are also slightly dependent on the re-
construction scheme used for defining the experimental W
mass.

Figure 6 shows the distribution of reconstructed mass
using only the unreconnected parts of the matrix element
(solid line). The dashed line shows one thousand times the
change induced when the reconnected terms are present.
The distributions for the mass under the full matrix ele-
ment and unreconnected terms only differ essentially by
a multiplicative constant of order 1.001. The mean value
of the mass distribution is shifted by less than a part per
million due to the presence of reconnected terms.

Figures 7, 8 and 9 show similar plots for the distri-
bution of the Bengtsson-Zerwas angle, the angle between
the two lowest energy jets α34 and the Nachtmann-Reiter
angle. It will be seen that the effect is at or below the per
mille level and is essentially just multiplicative, distortions
of the distributions occur at a much lower level. These ef-
fects can be understood within the soft interference limit.
In the soft limit one may describe gluon radiation using
eikonal vertices and the matrix element squared becomes.

|M|2 = |M0|2(H(k1, k2) + AG(k1)G(k2)) (16)

where H(k1, k2) is the soft unreconnected distribution, A
is some constant that will depend on the energy resolution
and W width. G(k) is the reconnected distribution (note
that at this order the reconnected gluons are radiated in-
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Fig. 8. Distribution of cos(α34) for unreconnected events (solid
line), change induced by reconnected terms ×500 (dashed line),
in arbitrary units

dependently, however this is not true in higher orders) and
is given by

G(k) =
(p1 · p4)

(p1 · k)(p4 · k)
+

(p2 · p3)
(p2 · k)(p3 · k)

− (p1 · p3)
(p1 · k)(p3 · k)

− (p2 · p4)
(p2 · k)(p4 · k)

(17)

One may integrate over the directions of each emission
to find the enhancement due to soft interference between
decays:

|Mrec|2 ∼ |M0|2 × ln2
(

(p1 · p4)(p2 · p3)
(p1 · p3)(p2 · p4)

)
(18)

where the momenta are as defined in Fig. 1.
The effect of the reconnection terms is essentially to en-

hance coplanar configurations where some invariant masses
can be much larger than others. In configurations where
the W decay planes are at right angles, none of the par-
ton directions can become close and so the argument of
the logarithm in equation (18) is close to one and there is
little enhancement. In most approximately coplanar con-
figurations the BZ angle will be close to either 0 or π as
both p1 × p2 and p3 × p4 (energy ordered momenta) are
likely to point out of the decay plane and hence be either
parallel or anti-parallel. Thus one expects enhancement
around these values.

The situation for cos(α34) is not quite so straight for-
ward. A similar argument favours cos(α34) ∼ 1 however
this configuration is suppressed by the jet reconstruction
kinematics; one would need two low energy quarks and
both gluons radiated in approximately the same direction
and to be clustered as two distinct jets. However the con-

Cos(NR)

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fig. 9. Distribution of cos(θNR), the Nachtmann-Reiter An-
gle for unreconnected events (solid line), change induced by
reconnected terms ×500 (dashed line)
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Fig. 10. Kinematic configurations which are a) Enhanced by
interference but kinematically suppressed (cos(α34) ∼ 1), and
b) Enhanced by interference (cos(α34) ∼ −1), since (p1 ·p4)(p2 ·
p3) > (p1 · p3)(p2 · p4). The momentum labels refer to Fig. 1,
and in this example p2 and p3 correspond to the lowest energy
jets

figurations corresponding to cos(α34) ∼ −1 can be en-
hanced (see Fig. 10).

A similar argument for θNR is not so apparent as its
geometrical interpretation is less clear (the angle between
the axis defined by the vector between the two lowest en-
ergy jets and that between the two highest energy jets).
One may construct the enhancement due to equation (18)
and find qualitatively the same shape as observed in Fig. 9.

The absolute value of the interference terms was inte-
grated over the region defined by ω ≥ 2 GeV, ω ≥ 5 GeV
and ω ≥ 10 GeV where ω is the minimum gluon energy.
This was done for scut = 10, 1.0, 0.1, 0.01 GeV2 and illus-
trates collinear finiteness (see results below).
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σ|int|/pb scut/GeV2

10 1.0 0.1 0.01
2 0.015 0.029 0.032 0.033

ω/GeV 5 0.0057 0.0082 0.009 0.01
10 0.0016 0.0023 0.0026 0.0026

The errors on these numbers are around 4% each. Note
that these are the integrated absolute value of the inter-
ference terms, the actual contribution of the interference
terms to the cross-section is typically an order of magni-
tude smaller due to large cancellations.

4 Conclusions

Effects of perturbative reconnection are not necessarily
small, however the regions of phase space in which sizable
effects can occur are small. Most experimentally inter-
esting distributions are unaffected by reconnection at the
perturbative level apart from a multiplicative factor close
to unity. In particular the mass distribution is shifted by
less than one part per million by lowest order reconnec-
tion effects in 6-jet events. Distributions sensitive to soft
momenta seem to show greater distortion, however these
effects are well below the per mille level and so unlikely
to be seen at LEP II.

The integration of the absolute value of the reconnec-
tion terms for gluon energies above 5 GeV shows that the
maximum effect could only be equivalent to a few events
at LEP II and can probably be neglected at this level of
statistics.

Of course reconnection effects summed over higher
terms, or within the hadronization phase need not be neg-
ligible and these effects still need to be addressed.
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